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Abstract

In this paper the problem of natural convection from an isothermal elliptic tube with its major axis horizontal and

placed in a micropolar fluid is investigated. The study is based on the solution of full conservation equations of mass,

linear momentum, angular momentum and energy without boundary layer assumptions. The study focuses on the effect

of the fluid material parameters and Rayleigh number on both flow and thermal fields. Prandtl number and ellipse axis

ratio are kept constant. Results are presented for the local and average Nusselt numbers along with some details of both

flow and thermal fields. In comparison with Newtonian fluids the study has shown that micropolar fluids display a

reduction in heat transfer rate.

� 2003 Published by Elsevier Ltd.
1. Introduction

Natural convection from cylindrical tubes to a sur-

rounding fluid has many practical applications. These

applications include nuclear reactors, heat exchangers,

hot wires, cooling of electronic devices, steam pipes and

many others. Previous studies have mainly focused on

natural convection from surfaces with relatively simple

geometry such as circular cylinders and flat plates and

placed in Newtonian fluids. Morgan [1] has compiled the

literature up to 1997 for the case of isothermal circular

cylinders.

The interest in investigating natural convection from

elliptic tubes placed in Newtonian fluids started when

Lin and Chao [2] solved the boundary layer equations

for the case of two dimensional and axisymmetric bodies

with circular and elliptic cylinders as special cases.

Raithby and Hollands [3] studied the natural convection

from elliptic tube with its major axis vertical. They also

considered different axis ratios with circular cylinder and

flat plate as limiting cases. Their results for average

Nusselt number were found to be in a good agreement

with the experimental data. Merkin [4] solved the gov-

erning boundary layer equations for the case of natural

convection from elliptic tube with major axis either

horizontal or vertical. He presented results for local and

averaged heat transfer rates for both constant surface
0017-9310/$ - see front matter � 2003 Published by Elsevier Ltd.
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temperature and constant surface heat flux. The analysis

of natural convection from horizontal elliptic tubes

placed in Newtonian fluids and based on the solution of

full governing equations were carried out by Badr and

Shamsher [5] and Badr [6]. Badr and Shamsher [5]

considered the case of the tube major axis vertical while

Badr [6] considered the case of tube at different orien-

tations. Huang and Mayinger [7] studied experimentally

the natural convection from elliptic tubes with different

axis ratios and at different orientations. They reported

results for the local and average Nusselt numbers to-

gether with a correlation for average Nusselt number.

Eringen [8] has proposed the theory of micropolar

fluids. This theory takes into account the local effects

arising from the microstructure and intrinsic motion of

fluid elements. Such fluids can support surface and body

couples which are not present in the theory of Newto-

nian fluids. Micropolar fluids are believed to be suc-

cessful in describing the behavior of heterogeneous

mixtures such as ferro liquids, colloidal fluids, animal

blood, most slurries and some liquids with polymer

additives. Eringen [9] developed the theory of thermo-

micropolar fluids by extending his theory of micropolar

fluids.

Previous studies of convective heat transfer in mi-

cropolar fluids have focused mainly on relatively simple

geometry [10–16]. The only attempt made to investigate



Nomenclature

a length of semi-major axis

Ar axis ratio (b=a)
b length of semi-minor axis

B dimensionless spin viscosity

c0 ellipse eccentricity (a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Ar2

p
)

c dimensionless ellipse eccentricity (c0=a)
fn Fourier coefficients

Fb buoyancy force

Fx0 , Fy0 components of buoyancy force in x0, y0 di-
rections

g gravitational acceleration

gn Fourier coefficients

Gr Grashof number (gbð2aÞ3ðTs � T1Þ=m2)
h, �hh local and average heat transfer coefficients

H0, Hn Fourier coefficients

k thermal conductivity

Kv vortex viscosity

j microinertia density

M dimensionless microrotation

Nu, Nu local and average Nusselt numbers

Pr Prandtl number (m=a)
Ra Rayleigh number (GrPr)
t dimensionless time

T temperature

x0, y0 Cartesian coordinates

x, y dimensionless Cartesian coordinates

Y � the distance from the tube surface at along

line g ¼ 90, y0�a
a Ra0:25

� �
Greek symbols

a thermal diffusivity

b coefficient of thermal expansion

D dimensionless vortex viscosity

e dimensionless length (1=c)
/ dimensionless temperature (ðT � T1Þ=

ðTs � T1Þ)
g, n elliptical coordinates

c spin gradient viscosity

l dynamic viscosity

k dimensionless spin gradient viscosity

m kinematics viscosity

q density

r component of microrotation vector in x0, y0

plane

s time

w0, w dimensional and dimensionless stream

functions

f0, f dimensional and dimensionless vorticity

Subscripts

s at the tube surface

1 at infinite distance from the tube surface

x'

Fb
ξ

g
η
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the case of natural convection from an elliptic cylinder

placed in a micropolar fluid was carried out by Bhat-

tacharyya and Pop [17]. In their study steady natural

convection from isothermal elliptic tube with its major

axis either horizontal or vertical was considered. They

solved the boundary layer equations using a solution

procedure similar to that of Merkin [4]. They presented

results for local Nusselt number along with velocity and

temperature fields.

The main objective of this study is to analyze the

natural convection from an isothermal horizontal ellip-

tic tube placed in a micropolar fluid. The analysis is

based on the solution of full governing equations using

spectral Fourier series expansion method. The local and

average Nusselt numbers are presented as well as some

details of both flow and thermal fields. The buoyancy

driven flow is assumed laminar and two dimensional.
y'

ξs b

Fig. 1. Physical model and coordinate system.
2. Problem formulation

Fig. 1 shows the physical model and coordinates

system, consisting of an isothermal horizontal elliptic

tube of infinite length placed with its major axis hori-
zontal in a quiescent micropolar fluid at temperature T1.

The buoyancy driven flow is assumed to be laminar and

two-dimensional. The effect of viscous dissipation and

micropolar heat conduction is assumed to be negligible

and the fluid properties are assumed to be constant. The

conservation equations of mass, linear momentum, an-

gular momentum and energy for a micropolar fluid are
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based on the model developed by Eringen [8,9]. These

equations within Boussinesq approximation can be

written in terms of vorticity, stream function, micro-

rotation and temperature as:

of0

os
þ ow
oy0

of0

ox0
� ow
ox0

of0

oy0
¼ m

�
þ Kv

q

�
r2f0 � Kv

q
r2r

þ 1

q
oFy0
ox0

�
� oFx0

oy0

�
ð1Þ

f0 ¼ �r2w0 ð2Þ

or
os

þ ow0

oy0
or
ox0

� ow0

ox0
or
oy0

¼ c
qj

r2rþ Kv

qj
ðf0 � 2rÞ ð3Þ

oT
os

þ ow0

oy0
oT
ox0

� ow0

ox0
oT
oy0

¼ k
qcv

r2T ð4Þ

where

r2 ¼ o2

ox02
þ o2

oy02

s is the time, q is the density, m is the kinematic viscosity,

k is the thermal conductivity and cv is the specific heat.

Kv, j and c are the vortex viscosity, microinertia density

and spin-gradient viscosity. f0 is the vorticity, w0 is the

stream function, T is the temperature and r is the

component of microrotation vector whose direction of

rotation is in the x0 � y0 plane. Fx0 ¼ qgbðT � T1Þ,
Fy0 ¼ 0 are the components of the buoyancy force, where

b is the coefficient of thermal expansion of the fluid.

The boundary conditions are mainly the no-slip and

impermeability conditions on the tube surface and the

stagnant ambient conditions very far away from it.

These boundary conditions can be expressed as:

w0 ¼ ow0

ox0
¼ 0;

ow0

oy0
¼ 0; T ¼ Ts and

r ¼ 0 on the tube surface ð5aÞ

ow0

ox0
! 0;

ow0

oy0
! 0; T ! T1 and

r ! 0 far away from the tube surface ð5bÞ

The following dimensionless variables are now intro-

duced:

x ¼ x0

a
; y ¼ y 0

a
; t ¼ sa

a2
; w ¼ w0

a
; f ¼ �f0

a2

a
;

M ¼ a2r
a

; D ¼ qKv

m
; B ¼ a2

j
; k ¼ qc

jm
and

/ ¼ T � T1
Ts � T1

where a is the length of semi-major axis and a is the

thermal diffusivity of the fluid.
To prepare Eqs. (1)–(4) for accurate numerical

treatment it is more appropriate to use elliptic coordi-

nates n, g defined as

nþ ig ¼ e sinh�1ðxþ iyÞ

where e ¼ 1=c, c is the dimensionless ellipse eccentricity.

Using the above transformation, the dimensionless form

of Eqs. (1)–(4) in the elliptic coordinates read the fol-

lowing:

J
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ot

¼ Prð1þ DÞ o2f

on2

�
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og2

�
þ ow

on
of
og

� ow
og
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on
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�
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og2

�
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8e

sinh n sin g
o/
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�
þ cosh n cos g

o/
og

�
ð6Þ

Jf ¼ o2w

on2
þ o2w

og2
ð7Þ
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oM
ot
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on

oM
og

� ow
og

oM
og

þ Prk
o2M

on2

�
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og2

�
� JDBPrðfþ 2MÞ ð8Þ
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on2

�
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�
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on
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on

ð9Þ

where J ¼ ðcosh2 n� sin2 gÞ=e2, Ra ¼ GrPr is the Ray-

leigh number, Gr ¼ gbð2aÞ3ðTs � T1Þ=m2 is the Grashof

number and Pr ¼ m=a is the Prandtl number.

The boundary conditions (5) can now be expressed as

w ¼ ow
on

¼ 0;
ow
og

¼ 0; M ¼ 0 and

/ ¼ 1 at n ¼ ns ð10aÞ

ow
on

! 0;
ow
og

! 0; M ! 0 and

/ ! 0 as n ! 1 ð10bÞ

where ns defines the ellipse surface (¼ tanh�1 b=a).
The temperature of the stagnant fluid around the

tube at times t < 0 is T1 (/ ¼ 0) which is the same as

that of the tube surface. At the start of computations

(t ¼ 0) the tube surface assumes a sudden temperature

increase from T1 to Ts (/ ¼ 1), and from that moment

the time development of both flow and thermal fields

starts.
3. The method of solution

The method used for solving the governing equa-

tions (6)–(9) to obtain the time development of both

velocity and temperature fields is based on approxi-

mating the stream function, vorticity, microrotation and
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temperature using Fourier series expansion. The ap-

proach is similar to that used by Collins and Dennis [18]

and by Badr and Dennis [19]. The stream function w,
vorticity f, microrotation M and temperature / are now

approximated as

w ¼
XN
n¼1

fn sinðngÞ n ¼ 1; 2;N ð11aÞ

f ¼
XN
n¼1

gn sinðngÞ ð11bÞ

M ¼
XN
n¼1

rn sinðngÞ ð11cÞ

/ ¼ H0 þ
XN
n¼1

Hn cosðngÞ ð11dÞ

where N is the number of terms in the Fourier series.

The functions fn, gn, rn, H0 and Hn are Fourier coeffi-

cients and all are dependent on n and t. Substitution of

Eqs. (11a)–(11d) in Eqs. (6)–(9) results in the following

set of differential equations:

o2fn
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1
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�
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�

¼ 2e2Prk
o2rn
on2

�
� n2rn

�
þ Kn ð14Þ
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o
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H0

Hn

� �
þ 1

2

o

ot
H2

Hðnþ2Þ

� �
þ 1

2

o

ot
0
Hjnþ2j

� �

¼ 2e2
o2

on2
H0

Hn

� �
� 2n2e2

0
Hn

� �
þ Z0
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� �
ð15Þ

where sgnðn� 2Þ means the sign of term (n� 2) and

sgnðn� 2Þ ¼ gjn�2j ¼ rjn�2j ¼ 0, Hjn�2j ¼ H0 for n ¼ 2.

The terms Sn, Kn, Z0 and Zn are all easily identifiable

functions of n and t.
The boundary conditions for all functions presented

in equations (12)–(15) are obtained from Eqs. (10) and

can be expressed as

fn ¼ rn ¼ Hn ¼ 0; H0 ¼ 2;
ofn
on

¼ 0

at n ¼ ns and
1

J 1=2
fn;

1

J 1=2

ofn
on

; gn; rn; H0; Hn ! 0

as n ! 1 ð16Þ
Integrating the both sides of Eq. (12) with respect to n
(after multiplying by e�nn) from n ¼ ns to n ¼ 1 and

using the boundary conditions (16) one obtains the in-

tegral condition:

Z 1

ns

e�nn cosh2ngn

�
þ 1

2
½gðnþ2Þ þ sgnðn� 2Þgjn�2j�

�
dn¼ 0:

ð17Þ

The above integral condition is used to get the values

of the function gn on the tube surface which is then

substituted in Eq. (11b) to get the surface vorticity dis-

tribution.

The initial values (t ¼ 0) for Fourier coefficients can

be written as

fnðn; 0Þ ¼ gnðn; 0Þ ¼ rnðn; 0Þ ¼ Hnðn; 0Þ ¼ 0;

for 16 n6N ; nP ns

H0ðn; 0Þ ¼ 2 for n ¼ ns and H0ðn; 0Þ ¼ 0

for n > ns

ð18Þ

The number of points used in the n direction is 200 with

a grid size taken as 0.05. This approximates the outer

boundary at infinity at nmax ¼ ns þ 10, which corre-

sponds to a very large distance from the tube surface.

Such large distance is necessary to ensure that the con-

ditions at infinity are appropriately incorporated in the

numerical solution. The logarithmic nature of the n co-

ordinate enables us to have equal space steps in the

numerical treatment while the physical space steps are

gradually growing from very small space steps near the

surface to large ones far away. This matches quite well

the physical situation where steep variations near the

surface exist. The number of terms in Fourier series is

taken as five terms at the start and then more terms are

added as the time elapses until reaching the steady state.

The maximum number of terms N used in most of the

cases considered was 40. The solution procedure is the

same as that described by Badr and Dennis [19] and

Mahfouz and Badr [20]. The only difference is the ap-

pearing of the unknown terms gðnþ2Þ, rðnþ2Þ and Hðnþ2Þ in

Eqs. (12)–(15). These terms were first approximated and

corrected through an iterative procedure every time step.

The local and average Nusselt numbers are defined as

Nu ¼ 2ah=k; Nu ¼ 2a�hh=k ð19Þ

where k is the fluid thermal conductivity and h and �hh are

the local and averaged heat transfer coefficients. The

local heat transfer coefficient is defined as

h ¼ _qq=ðTs � T1Þ; _qq ¼ �kðoT=oSnÞns ð20Þ

where, _qq is the rate of heat transfer per unit area, Sn is

the normal direction to ellipse surface. From the above
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definitions one can deduce the relation between the Nu
and Fourier coefficients H0 and Hn

Nu ¼ �2 J�1=2 o/
on

� �
ns

¼ �J�1=2
s

oH0

on

"
þ 2

Xn¼N

n¼1

oHn

on
cos ng

#
ns

ð21Þ

where Js ¼ ðcosh2 ns � sin2 gÞ=e2.
The averaged heat transfer coefficient is defined as

�hh ¼ 1
P

R P
0
hdP where P is the perimeter of the elliptic

section. The averaged Nusselt number can now be ex-

pressed as

Nu ¼ 1

P

Z P

0

NudP ¼ � 2pa
P

oH0

on

� �
n¼ns

ð22Þ
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Fig. 2. Local Nusselt number distribution for the case of

Ra ¼ 104, Ar ¼ 0:4, Pr ¼ 0:7 and comparison with numerical

results of [6] and experimental results of [7].
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Fig. 3. Local Nusselt number distribution for the case of cir-

cular cylinder at Ra ¼ 105 and a comparison with results of

[21,22].
4. Results and discussion

The governing equations along with the boundary

conditions were solved in order to get the details of both

flow and thermal fields. The main controlling parame-

ters are Rayleigh number Ra, Prandtl number Pr, axis
ratio Ar and the material parameters D, B and k. For the
sake of brevity only the effect of Ra, D and B are con-

sidered while Pr, k and Ar are kept unchanged. The Ra
number is considered in its moderate range up to 104.

The study considered dimensionless vortex viscosity

parameter D in the range from 0 to 5 and dimensionless

microinertia density, B in the range from 0.1 to 10. The

spin gradient viscosity parameter k is fixed at value of 1.

These values for material parameters are chosen to sat-

isfy the thermodynamics restrictions given by Eringen

[9]. The Prandtl number is kept constant at 0.7 while the

axis ratio Ar is kept at 0.6. In this study, however, dif-

ferent values for these controlling parameters are chosen

whenever comparisons with previous results are con-

sidered.

The accuracy of the method of solution is first veri-

fied by comparing the present results with the most

relevant results in the literature. Fig. 2 shows a com-

parison between the present result for the steady-state

Nu with the numerical results of Badr [5] for the case of

natural convection from elliptic tube with major axis

horizontal at Ra ¼ 104, Ar ¼ 0:4 and placed in Newto-

nian fluid (D ¼ 0). Shown in the same figure are the

experimental results (modified to match present defini-

tion for Nu) of Haung and Mayinger [7] for Ar ¼ 0:389.
The figure shows very good agreement with that of Badr

[6] and good agreement with that of Haung and May-

inger [7]. The steady state local Nusselt number distri-

bution at Ra ¼ 105 for the special limiting case of

circular cylinder (Ar ¼ 0:998) and placed in Newtonian
fluid is shown in Fig. 3 together with the numerical and

experimental results reported by Kuehn and Goldstein

[21]. The numerical results of Saitoh et al. [22] for the

same case are shown also in the same figure. The figure

shows satisfactory agreement especially with the bench

mark solution of Saitoh et al. [22].
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Table 1 shows the effect of Ra number and the ma-

terial parameters D and B of a micropolar fluid on the

steady state average Nusselt number, Nu. It can be seen

that the effect of Ra on steady-state Nu is quite clear, that
is at any fixed value of fluid material parameters as Ra
increases the Nu increases. This is quite expected since

increasing of Ra leads to increasing of convection cur-

rents intensity and so increasing the heat transfer rate.

Also, it can be seen that as the material parameter D
increases at any fixed value of Ra the Nu decreases. The

table also shows that the effect of parameter B on steady

Nu in the range considered for parameters is almost

negligible.

Fig. 4 shows the time variation of average Nusselt

number Nu for the case of Rayliegh number, Ra ¼ 104,

Ar ¼ 0:6 and at different values of dimensionless vortex

viscosity D ¼ 0, 1, 2, 5. The figure clearly shows that the

general variation of average Nusselt number is similar to

that for Newtonian fluid (D ¼ 0). That is immediately

after the tube temperature is increased the conduction
case of Ra ¼ 104, Pr ¼ 0:7 Ar ¼ 0:6, k ¼ 1, B ¼ 0:1 and at dif-

ferent values of D.
Table 1

Effect of Rayleigh number and material parameters and B on

steady state average Nusselt number

Ar Ra D B NU

0.6 100 – – 2.105

1 0.1 1.998

2 0.1 1.931

5 0.1 1.792

1 1 2.030

2 1 1.935

5 1 1.751

1 10 2.045

2 10 1.972

5 10 1.809

1000 – – 3.143

1 0.1 2.931

2 0.1 2.814

5 0.1 2.604

1 1 2.926

2 1 2.806

5 1 2.611

1 10 2.932

2 10 2.830

5 10 2.678

10 000 – – 4.921

1 0.1 4.544

2 0.1 4.309

5 0.1 3.922

1 1 4.543

2 1 4.310

5 1 3.919

1 10 4.544

2 10 4.329

5 10 3.990

–, Refers to Newtonian fluid.
mode of heat transfer is prevailing with high values of

Nu due to high temperature gradient near the tube sur-

face. In this early time stages a quick decrease in heat

transfer rate occurs, reaching to a minimum value at a

certain time. Beyond this time, the buoyancy force starts

dominating, causing the fluid to set in motion and hence

transition to the convection mode. The transition from

conduction mode domination to convection mode

domination takes the form of overshoot in heat transfer.

At later times the convection dominated heat transfer

rate gradually approaches its steady state value.

It can be observed from the figure that the average

steady heat transfer rates in the case of micropolar fluids

(D ¼ 1, 2, 5) is lower than that for Newtonian fluid

(D ¼ 0). This decrease was attributed to the increase of

the effect of vortex viscosity which makes the fluid flow

more viscous and so weakens the convection currents. In

the initial stages where the conduction mode of heat

transfer is dominant there is no effect for vortex viscosity

and the heat transfer rates for micropolar fluid and

Newtonian fluid are identical. As the convection mode

starts dominating the vortex viscosity of micropolar

fluid enhances the flow viscosity and so weakens the

convection currents which in turn decreases the heat

transfer rate. The larger the value of vortex viscosity D
the larger the flow viscosity and the lower the value of

steady state Nu. Decreasing of heat transfer rates as the

vortex viscosity D increases is reported in the works of

Mahfouz [15] and Hsu et al. [16].

Fig. 5 shows the steady local Nusselt number distri-

bution over the elliptic tube surface for the case of

Ar ¼ 0:75, D ¼ 1:5, k ¼ 0:5 and Pr ¼ 1 and at different
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Rayleigh numbers. The values of Rayleigh number are

higher than the range considered for focusing the study.

This is to be able to compare results with the boundary

layer solution obtained by Bhattacharyya and Pop [17].

The boundary layer result shown in the same figure may

be the limiting case as Ra ! 1 for laminar flow ex-

cluding the plume region. At Ra ¼ 107 the deviation of

the local heat transfer based on boundary layer solution

from that obtained from present calculation is small in

the range 206 g6 110 with maximum difference of

about 8% at g ¼ 31. However, this difference increases

over the remaining part of the ellipse surface, (i.e

0 < g < 20 and 110 < g < 180) reaching about 25% in

the front stagnation region at g ¼ 180 and about 130%

in the rear stagnation region at g ¼ 0. It is believed,

unlike the case of circular cylinder or even the case of

elliptic tube with major axis vertical, the boundary layer

assumptions for elliptic tube with major axis horizontal

are not only inappropriate in the plume region but also

in the front stagnation region. In these two regions thick

thermal and momentum boundary layers are formed

due to surface geometry and inaccurate results are ex-

pected if the streamwise momentum and thermal diffu-

sion are neglected.

The steady-state local Nusselt number distributions

at Ra ¼ 104, Ar ¼ 0:6 and at different values of dimen-

sionless vortex viscosity is shown in Fig. 6. Since the

thermal field is symmetrical about the vertical axis, only

one half of Nu distribution is shown. It can be seen at the

topmost point on the tube surface (g ¼ 0) the Nu is

minimum and almost the same for all values of D. As g
increases from topmost point (g ¼ 0) to bottommost
point (g ¼ 180), the Nu increases for all values of D,
reaching a maximum at almost g ¼ 95 and then gradu-

ally decreases up to g ¼ 180. Decreasing of Nu distri-

butions at all points on the tube surface as D increases

explains the decrease of steady state Nu as D increases as

shown in Table 1. and Fig. 4.

Fig. 7 shows the surface vorticity distribution for the

same case. It can be seen that the maximum absolute
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surface vorticity occurs almost at g ¼ 90, the point at

which Nu assumes its maximum value. This link between

surface vorticity and local heat transfer rate is different

from that for the cases of circular cylinder and elliptic

tubes with major axis vertical (see [5]). In these two latter

cases the surface vorticity is zero at the front stagnation

point where the Nu is maximum. The figure also shows

that as D increases the surface vorticity decreases at all

surface points. Decreasing of surface vorticity means

decreasing of velocity gradients at the surface of the tube

which means a weakness in convection currents and so a

decrease in heat transfer rate.

Fig. 8 shows the steady state temperature distribution

along the extension of ellipse major axis (g ¼ 90) for the

case of Ra ¼ 103 and at different values of dimensionless

vortex viscosity, D. The figure shows that the tempera-

ture decreases with distances until it reaches the ambient

temperature at Y � almost equal to value of 7. The figure

clearly shows that as D increases the temperature gra-

dient at the tube surface decreases which explains the

decrease of heat transfer rate.

Figs. 9 and 10 show both steady flow field, in terms of

streamlines, and steady thermal field, in terms of iso-

therms, as well as steady vorticity and microrotation

fields for the case of k ¼ 1, D ¼ 5, B ¼ 1 and at three

Rayleigh numbers, Ra ¼ 100, 1000 and 10000. Since

these fields are symmetrical about the vertical axis, only

one half of each field is considered. Fig. 9 shows the

streamlines and isotherms patterns while Fig. 10 shows

the equi-vorticity and equi-microrotation patterns. Fig.

9 clearly shows that as Rayleigh number increases both
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Fig. 8. Dimensionless temperature distribution along line

(g ¼ 90) for the case of Ra ¼ 103, Pr ¼ 0:7, Ar ¼ 0:6, k ¼ 1,

B ¼ 0:1 and at different values of D.

(c)

Fig. 9. The steady streamlines (right) and isotherms patterns

(left) for the case of Ar ¼ 0:6, Pr ¼ 0:7, k ¼ 1, D ¼ 5 and B ¼ 1:

(a) Ra ¼ 102 (b) Ra ¼ 103 and (c) Ra ¼ 104.
streamlines and isotherms are getting closer to the tube

surface, indicating thinner momentum and thermal

boundary layers. The same effect can be observed in Fig.

10, where zero vorticity line and zero angular velocity

line (dashed lines in both sides) are getting closer to the

surface as Ra increases. Fig. 10 also shows that both

vorticity and microrotation fields are very similar with

zero vorticity and microrotation lines are almost similar

with a little deviation at the top of the tube (i. e. g ¼ 0).

This deviation between vorticity (regional rotation) and

microrotation (elements microrotation) can be attrib-

uted to the inertia of fluid elements microrotation.



(a)

(b)

(c)

Fig. 10. The steady equi-vorticity (right) and microrotation

(left) patterns for the case of Ar ¼ 0:6, Pr ¼ 0:7, k ¼ 1, D ¼ 5

and B ¼ 1: (a) Ra ¼ 102; (b) Ra ¼ 103 and (c) Ra ¼ 104.
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5. Conclusions

The effect of material parameters of micropolar fluid

and Rayleigh number on natural heat convection from

an isothermal elliptic tube with major axis horizontal

and placed in a micropolar fluid is investigated. The full

governing equations of linear momentum, angular mo-

mentum and energy have been solved to give the details

of flow and thermal fields. In this study the dimension-

less spin gradient viscosity, k Prandtl number, Pr and

axis ratio, Ar are kept unchanged at 1, 0.7 and 0.6, re-
spectively, while the study considered a range for Ra up

to 104, a range for dimensionless vortex viscosity, D
from 0 to 5 and a range for spin viscosity, B from 0.1 to

10. The study showed that at certain values for material

parameters as Rayleigh number increases the local heat

transfer rate increases at all points on the cylinder sur-

face which in turn increases the average heat transfer

rate. The study has also shown that the vortex viscosity

is the most important material parameter. A noticeable

reduction in local and average heat transfer rates is

observed as vortex viscosity increases. Generally, the

study showed that the convective heat transfer rate de-

creases in the micropolar fluids in comparison with the

Newtonian fluids.
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